Democracy functions and optimal embeddings for approximation spaces

نویسندگان

  • Gustavo Garrigós
  • Eugenio Hernández
  • Maria de Natividade
چکیده

We prove optimal embeddings for nonlinear approximation spaces Aq , in terms of weighted Lorentz sequence spaces, with the weights depending on the democracy functions of the basis. As applications we recover known embeddings for N -term wavelet approximation in L, Orlicz, and Lorentz norms. We also study the “greedy classes” G α q introduced by Gribonval and Nielsen, obtaining new counterexamples which show that G α q 6= Aq for most non democratic unconditional bases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spaces of generalized smoothness in the critical case: Optimal embeddings, continuity envelopes and approximation numbers

We study necessary and sufficient conditions for embeddings of Besov spaces of generalized smoothness B p,q (Rn) into generalized Hölder spaces Λ μ(·) ∞,r(R) when s(Nτ−1) > 0 and τ−1 ∈ `q′ , where τ = σN−n/p. A borderline situation, corresponding to the limiting situation in the classical case, is included and give new results. In particular, we characterize optimal embeddings for B-spaces. As ...

متن کامل

Democracy functions of wavelet bases in general Lorentz spaces

We compute the democracy functions associated with wavelet bases in general Lorentz spaces Λw and Λ q,∞ w , for general weights w and 0 < q <∞.

متن کامل

Optimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces

In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...

متن کامل

A Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation

In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...

متن کامل

Randomized approximation of Sobolev embeddings, III

We continue the study of randomized approximation of embeddings between Sobolev spaces on the basis of function values. The source space is a Sobolev space with nonnegative smoothness order, the target space has negative smoothness order. The optimal order of approximation (in some cases only up to logarithmic factors) is determined. Extensions to Besov and Bessel potential spaces are given and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2012